

ISSN No. (Print): 0975-1718 ISSN No. (Online): 2249-3247

Pseudo-S- Metric Spaces and Pseudo-S-Metric Product Spaces

Akansha Sharma*, Mahesh Tiwari** and Ramakant Bhardwaj*

*Department of Mathematics, TIT Group of Institutes Bhopal, (Madhya Pradesh), INDIA *Department of Mathematics, Research Scholar AISECT University Bhopal, (Madhya Pradesh), INDIA

> (Corresponding author: Akansha Sharma) (Received 11 April, 2016 Accepted 20 May, 2016) (Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Shaban Sedghi and Nguyen Van Dung [2] prove a general fixed point theorem in S-metric spaces which is a generalization of S. Sedghi, N. Shobe, A. Aliouche, Mat. Vesnik [3] as applications, they get many analogues of fixed point theorems from metric spaces to S-metric spaces. Inspired by their work In this paper we define pseudo-S-metric spaces and pseudo-S-metric product spaces.

Keywords: S- metric spaces, pseudo-S- metric spaces and pseudo-S-metric product spaces.

I. INTRODUCTION

We begin with the following definition:

DEFINITION (1): Let X be a nonempty set. An Smetric on X is a function S: $X^3 \rightarrow [0,\infty)$ that satisfies the following conditions, for each x, y, z \in X

- 1) $S(x, y, z) \ge 0$
- 2) S(x, y, z) = 0 if and only if x=y=z
- 3) $S(x, y, z) \le S(x, x, a) + S(y, y, a) + S(z, z, a)$

The pair (X, S) is called an S-metric space.

Immediate examples of such S-metric spaces are:

EXAMPLE 1.1 Let $X = R^n$ and $\|.\|$ a norm on X, then $S(x, y, z) = \|x-z\| + \|y-z\|$ is an S-metric on X **EXAMPLE 1.2** Let $X = R^n$ and $\|.\|$ a norm on X, then $S(x, y, z) = \|y+z-2x\| + \|y-z\|$ is an S-metric on X

EXAMPLE 1.3 Let X be a nonempty set, d is ordinary metric on X, then S(x, y, z) = d(x, z) + d(y; z) is an Smetric on X.

DEFINITION 2: Let S: $X \times X \times X \to R$ with the following properties $\forall x, y, z \in X$

- 1) $S(x, y, z) \ge 0$
- 2) If x=y=z then S(x, y, z) = 0
- 3) $S(x, y, z) \le S(x, x, a) + S(y, y, a) + S(z, z, a)$ then the function S is called a pseudo-S-metric, on X, and the pair (X, S) is a pseudo-S-metric space.

Theorem 1.1: Every S-metric space is a pseudo S-metric but every pseudo S-metric is not necessarily S-metric space.

Proof: From definition of S-metric space it is obvious that every S-metric space is pseudo S-metric space to proof converse let us define

S:
$$R \times R \times R \rightarrow R^+$$
 s.t.

$$S(x, y, z) = |x^2-z^2| + |y^2-z^2| \forall x, y, z \in X$$

It is easy to check that S is pseudo S-metric on R^+

evidently.

S (x, y, z) = 0
$$\Rightarrow$$
 x^2 - z^2 =0 and y^2 - z^2 =0 \Rightarrow x= \pm z and y= \pm z

Thus S (x, y, z) = 0 does not necessarily implies x=y and y=z and z=x

Hence (R, S) is pseudo S-metric but not S-metric space. Let $\{X_i, S_i\}$: i=1,2,3....n} be a collection of pseudo S-metric Spaces and X denote the product of the sets $X = \prod_{i=1}^{I} X_i$ it is natural to ask whether or not it is possible to define a pseudo S-metric on X.

The next theorems give a positive answer to this question.In the case of finite or a denumerable collection of pseudo S-metric space.

II. MAIN RESULT

Theorem 2.1(2): If (X_1, S_1) , (X_2, S_2) , (X_3, S_3) (X_m, S_m) be a pseudo S-metric and let $x = (a_1, a_2, a_3, \ldots, a_m)$, $y = (b_1, b_2, b_3, \ldots, b_m)$ and $z = (c_1, c_2, c_3, \ldots, c_m)$ are arbitrary points in product set $X = {}^{\Pi}_{i} X_i$ then each of the following functions:

- (i) S (x, y, z) = $[S_1(a_1, b_1, c_1)^2 + S_2(a_2, b_2, c_2)^2 + ... + S_m(a_m, b_m, c_m)^2]^{1/2}$
- (ii) S (x, y, z) = Max { S_1 (a_1 , b_1 , c_1), S_2 (a_2 , b_2 , c_2),..., S_m (a_m , b_m , c_m }
- (iii) S (x, y, z) = S_1 (a_1 , b_1 , c_1) + S_2 (a_2 , b_2 , c_2)+ ...+ S_m (a_m , b_m , c_m)

are pseudo S-metric on X .known as the product pseudo S-metric on X and (x, s) is known as pseudo S-metric product space.

Proof let $S(x.y.z) = [S_1 (a_1, b_1, c_1)^2 + S_2 (a_2, b_2, c_2)^2 + ... + S_m (a_m, b_m, c_m)^2]^{1/2}$

$$i = 1, 2, m \Rightarrow S_i(a_i, b_i, c_i) \ge 0 \ \forall \ i = 1, 2, m$$

```
\sum_{i=1}^{m} \text{Si (ai, bi, ci)})^2 = 0, \forall i = 1, 2, .... m
\Rightarrow S (x, y, z) \geq 0
Let S (x,y,z) = \{ [S_1, a_1, b_1, c_1)^2 + S_2, (a_2, b_2, c_2)^2 + (a_1, b_2, c_2)^2 \}
...+ S_m(a_m, b_m, c_m)^2] <sup>1/2</sup>
If x, y and z are equal \Rightarrow a<sub>i</sub>, b<sub>i</sub>, c<sub>i</sub> are equal for all
i=1,,2,3.....m
\sum S_i (a_i, b_i, c_i)^2 = 0
\Rightarrow S(x, y, z) = 0 \qquad ...(2)
 s(x,y,z) \le [S_1 (a_1, b_1, c_1)^2 + S_2 (a_2, b_2, c_2)^2 + ... +
S_m(a_m,b_m,c_m)^{\bar{2}}]^{1/2}
 \leq \left[ \left[ S_1 \left( a_1, a_1, k_1 \right) + S_1 \left( b_1, b_1, k_1 \right) + S_1 \left( c_1, c_1, k_1 \right)^2 \right] \right]
    S_2(a_2, a_2, k_2) + S_2(b_2, b_2, k_2) + S_2(c_2, c_2, k_2)^2
   S_3 (a<sub>3</sub>,a<sub>3</sub>,k<sub>3</sub>)+ S_3 (b<sub>3</sub>, b<sub>3</sub>, k<sub>3</sub>)+ S_3(c<sub>3</sub>, c<sub>3</sub>, k<sub>3</sub>]<sup>2</sup>+
   S_m (a_m, a_m, k_m) + S_m (b_m, b_m, k_m) + S_m (c_m, c_m, k_m)^2
     \left[\sum \left[S_{i}(a_{i}, a_{i}, k_{i}) + S_{i}(b_{i}, b_{i}, k_{i}) + S_{i}(c_{i}, c_{i}, k_{i})^{2}\right]^{1/2}\right]^{1/2}
        \forall i = 1, 2, 3 .... m
     \leq [\sum [S_i(a_i, a_i, k_i)^2]^{1/2} + [\sum S_i(b_i, b_i, k_i)^2]^{1/2} + [\sum S_i(c_i, k_i)^2]^{1/2}
(c_i, k_i]^2
        \forall i =1,2,3...m (by Minkowski's inequality)
=s(x, x, k)+s(y, y, k)+s(z, z, k)
now let S(x, y, z) = \max\{S_1(a_1, b_1, c_1) + S_2(a_2, b_2, a_3)\}
(c_2) + ... + S_m(a_m, b_m, c_m)
                                        \forall i=1,2,3...m
\Rightarrowmax (S<sub>i</sub> (a<sub>i</sub>, b<sub>i</sub>, c<sub>i</sub>) \geq 0 \forall i = 1, 2, .... m
\Rightarrow S(x,y,z) \geq0 \forall i = 1, 2, .... m
If x, y and z are equal \Rightarrow a<sub>i</sub>, b<sub>i</sub>, c<sub>i</sub> are equal for all
i=1,,2,3.....m
\Rightarrow S<sub>i</sub> (a_i, b_i, c_i) = 0
\max\{S_1(a_1, b_1, c_1) + S_2(a_2, b_2, c_2) + ... + S_m(a_m, b_m, c_m)\}
(c_m) =0
 \RightarrowS (x, y, z) = 0
let k=(k_1,k_2,k_3,...,k_m) \in X, Then
S(x,y,z)=S_1(a_1, b_1, c_1)+S_2(a_2, b_2, c_2)+...+S_m(a_m, c_1)
b_m, c_m)
 S(x,x,k) = \max\{S_1 (a_1, a_1, k_1) + S_2 (a_2, a_2, k_2) + ... +
S_m(a_m, a_m, k_m)
S(y, y, k) = \max\{S_1(b_1, b_1, k_1) + S_2(b_2, b_2, k_2) + ... +
S_m(b_m, b_m, k_m)
S(z,z,k) = \max\{S_1 (c, c_1, k_1) + S_2 (c_2, c_2, k_2) + ... +
S_m(c_m, c_m, k_m)
Now, S (x, y, z)=\max\{S_1(a_1, b_1, c_1) + S_2(a_2, b_2, c_2) +
...+ S_m(a_m, b_m, c_m)
```

 $\leq \max\{S_1(a_1, a_1, k_1) + S_2(a_2, a_2, k_2) + \dots + S_m(a_m, a_m, k_m)\} + \max\{S_1(b_1, b_1, k_1) + S_2(b_2, b_2, k_2) + \dots + S_m(b_m, b_m, k_m)\} + \max\{S_1(c, c_1, k_1) + S_2(c_2, c_2, k_2) + \dots + S_m(c_m, c_m, k_m)\}$

 $\leq S(x, x, k) + S(y, y, k) + S(z, z, k)$...(6)

 $S_{m}(a_{m}, b_{m}, \square_{\square}) \leq \{\square_{1}(\square_{1}, \square_{1}, \square_{1}) + \square_{2}(\square_{2}, \square_{2}, \square_{2}) + ... + \square_{\square}(\square_{\square}, \square_{\square}) \} + \{\square_{1}(\square_{1}, \square_{1}, \square_{1}) + \square_{2}(\square_{2}, \square_{2}, \square_{2}) + ... + \square_{\square}(\square_{\square}, \square_{\square}, \square_{\square}) \} + \{\square_{1}(\square, \square_{1}, \square_{1}) + \square_{2}(\square_{2}, \square_{2}, \square_{2}) + ... + \square_{\square}(\square_{\square}, \square_{\square}, \square_{\square}) \} \leq S(x, x, k) + S(y, y, k) + S(z, z, k) \qquad ...(9)$

By the given equations it is proved that every S-metric space is a pseudo S-metric but every pseudo S-metric is not necessarily S-metric space.

Theorem 2.2

If $\{(\Box_1, \Box_1), (\Box_2, \Box_2), (\Box_3, \Box_3), \dots, (\Box_{\Box}, \Box_{\Box})\}$ be denumerable collection of pseudo s metric space and let $\mathbf{x} = (\Box_1, \Box_2, \Box_3, \dots, \Box_{\Box}), \mathbf{y} = (\Box_1, \Box_2, \Box_3, \dots, \Box_{\Box})$ and $\mathbf{z} = (\Box_1, \Box_2, \Box_3, \dots, \Box_{\Box})$ are arbitrary points in product set $\mathbf{X} = \begin{bmatrix} \mathbf{I} & \Box \\ \mathbf{I} & \Box \end{bmatrix}$ then the function s defined by

 $S(x,y,z) = \sum_{n=1}^{\infty} \frac{1}{2^{n}} \left(\frac{\prod_{n=1}^{\infty} \prod_{n=1}^{\infty} \prod_{n=1}^{\infty}$

Proof 1. S_n (a_n, b_n, c_n) ≥ 0 \forall n = 1, 2, 3...., ∞ ⇒ S(x,y,z) ≥0 \forall n= 1, 2, 3... ∞ . **2.**If x, y and z are equal ⇒ a_n, b_n, c_n are equal for all n=1,,2,3..... ∞ ⇒ S_n (a_n, b_n, c_n) = 0 \forall n = 1, 2, 3...., ∞

⇒S_n $(a_n, b_n, c_n) = 0$ ∀ n = 1, 2, 3...., ∞

3. Let
$$k=(k_1, k_2, k_3, ..., k_m) \in X$$
 then
$$\frac{1}{2^{\square}} \left(\frac{1 + \square_{\square}(\square_{\square}, \square_{\square},) + \square_{\square}(\square_{\square}, \square_{\square},) \square_{\square}(\square_{\square}, \square_{\square},)}{1 + \square_{\square}(\square_{\square}, \square_{\square},) + \square_{\square}(\square_{\square}, \square_{\square},) \square_{\square}(\square_{\square}, \square_{\square},)}\right)$$

$$\begin{split} & \leq \frac{s_n(a_n, a_n, k_n,)}{1 + s_n(a_n, a_n, k_n,)} \\ & \leq \frac{1}{1 + s_n(a_n, a_n, k_n,)} \\ & \frac{1}{2^n} \frac{s_n(b_n, b_n, k_n,)}{1 + s_n(a_n, a_n, k_n,) + s_n(b_n, b_n, k_n,) s_n(c_n, c_n, k_n,)} \\ & \text{And} \\ & \leq \frac{s_n(b_n, b_n, k_n,)}{1 + s_n(b_n, b_n, k_n,)} \\ & \frac{1}{2^n} \frac{s_n(c_n, c_n, k_n,)}{1 + s_n(a_n, a_n, k_n,) + s_n(b_n, b_n, k_n,) s_n(c_n, c_n, k_n,)} \\ & \leq \frac{s_n(c_n, c_n, k_n,)}{1 + s_n(c_n, c_n, k_n,)} \\ & \text{Now S } (x, y, z) \\ & = \sum_{i=1}^{\infty} \frac{1}{2^n} (\frac{s_n(a_n, b_n, c_n,)}{1 + s_n(a_n, b_n, c_n,)} \end{split}$$

Now S
$$(x,y,z)$$

$$\leq \frac{1}{2^{n}} \left(\frac{s_{n}(a_{n}, a_{n}, k_{n})}{1 + s_{n}(a_{n}, a_{n}, k_{n}) + s_{n}(b_{n}, b_{n}, k_{n}) s_{n}(c_{n}, c_{n}, k_{n})} \right)$$

$$+ \frac{1}{2^{n}} \left(\frac{s_{n}(b_{n}, b_{n}, k_{n})}{1 + s_{n}(a_{n}, a_{n}, k_{n}) + s_{n}(b_{n}, b_{n}, k_{n}) s_{n}(c_{n}, c_{n}, k_{n})} \right)$$

$$+ \frac{1}{2^{n}} \left(\frac{s_{n}(c_{n}, c_{n}, k_{n})}{1 + s_{n}(a_{n}, a_{n}, k_{n}) + s_{n}(b_{n}, b_{n}, k_{n}) s_{n}(c_{n}, c_{n}, k_{n})} \right)$$

$$\frac{1}{2^{n}} \left(\frac{s_{n}(a_{n}, b_{n}, c_{n},)}{1 + s_{n}(a_{n}, b_{n}, c_{n},)} \right) \ge 0$$
It completes the proof.

REFERENCES

- [1]. Lipschutz, S., Schaum's outline of theory and problem of General Topology (1965).
- [1]. Fixed point theorems on s-metric spaces Shaban Sedghi and Nguyen Van Dzung. matematiqki vesnik 66, 1 (2014), 113-124 March 2014.
- [3]. S. Sedghi, N. Shobe, A. Aliouche, Mat. Vesnik A generalization of fixed point theorems in S-metric spaces 64 (2012), 258-266